CUDA: Introduction

Christian Trefftz / Greg Wolffe
Grand Valley State University
Supercomputing 2008
Education Program

(modifications by Jernej Barbic, 2008-2019)
Terms

What is GPGPU?
- General-Purpose computing on a Graphics Processing Unit
- Using graphic hardware for non-graphic computations

What is CUDA?
- Parallel computing platform and API by Nvidia
- Compute Unified Device Architecture
- Software architecture for managing data-parallel programming
- Introduced in 2007; still actively updated
Motivation
Motivation

![Graph showing the performance of Nvidia GPUs and Intel CPUs from 2006 to 2013. The graph indicates a significant increase in performance for Nvidia GPUs compared to Intel CPUs over this period.](image-url)
CPU vs. GPU

- **CPU**
 - Fast caches
 - Branching adaptability
 - High performance

- **GPU**
 - Multiple ALUs
 - Fast onboard memory
 - High throughput on parallel tasks
 - Executes program on each fragment/vertex

- CPUs are great for *task* parallelism
- GPUs are great for *data* parallelism
CPU vs. GPU - Hardware

- More transistors devoted to data processing
Traditional Graphics Pipeline

Vertex processing

↓

Rasterizer

↓

Fragment processing

↓

Renderer (textures)
Pixel / Thread Processing

Input Registers
- Fragment Program
- Output Registers

Thread Number
- Thread Program
- Parallel Data Cache
- Texture
- Constants
- Registers

Global Memory
GPU Architecture
Processing Element

- Processing element = thread processor
GPU Memory Architecture

Uncached:
- Registers
- Shared Memory
- Local Memory
- Global Memory

Cached:
- Constant Memory
- Texture Memory
Data-parallel Programming

- Think of the GPU as a massively-threaded co-processor
- Write “kernel” functions that execute on the device -- processing multiple data elements in parallel

- Keep it busy! ⇒ massive threading
- Keep your data close! ⇒ local memory
Hardware Requirements

- CUDA-capable video card
- Power supply
- Cooling
- PCI-Express
A Gentle Introduction to CUDA Programming
Credits

The code used in this presentation is based on code available in:

- the Tutorial on CUDA in Dr. Dobbs Journal
- Andrew Bellenir’s code for matrix multiplication
- Igor Majdandzic’s code for Voronoi diagrams
- NVIDIA’s CUDA programming guide
Software Requirements/Tools

- CUDA device driver
- CUDA Toolkit (compiler, CUBLAS, CUFFT)
- CUDA Software Development Kit
 - Emulator

Profiling:

- Occupancy calculator
- Visual profiler
To compute, we need to:

- Allocate memory for the computation on the GPU (incl. variables)
- Provide input data
- Specify the computation to be performed
- Read the results from the GPU (output)
Initially:

- CPU Memory
- GPU Card’s Memory

array
Allocate Memory in the GPU card

array
Host’s Memory

array_d
GPU Card’s Memory
Copy content from the host’s memory to the GPU card memory

array
Host’s Memory

array_d
GPU Card’s Memory
Execute code on the GPU

- Host’s Memory
 - array

- GPU Card’s Memory
 - array_d
 - GPU MPs
Copy results back to the host memory

array
Host’s Memory

array_d
GPU Card’s Memory
The Kernel

- The code to be executed in the stream processors on the GPU
- Simultaneous execution in several (perhaps all) stream processors on the GPU
- How is every instance of the kernel going to know which piece of data it is working on?
Grid and Block Size

- **Grid size**: The number of blocks
 - Can be 1 or 2-dimensional array of blocks

- **Each block is divided into threads**
 - Can be 1, 2, or 3-dimensional array of threads
Let’s look at a very simple example

- The code has been divided into two files:
 - simple.c
 - simple.cu

- `simple.c` is ordinary code in C
- It allocates an array of integers, initializes it to values corresponding to the indices in the array and prints the array.
- It calls a function that modifies the array
- The array is printed again.
```c
#include <stdio.h>
define SIZEOFARRAY 64
extern void fillArray(int *a, int size);

/* The main program */
int main(int argc, char *argv[])
{
    /* Declare the array that will be modified by the GPU */
    int a[SIZEOFARRAY];
    int i;
    /* Initialize the array to 0s */
    for(i=0; i < SIZEOFARRAY; i++) {
        a[i] = 0;
    }
    /* Print the initial array */
    printf("Initial state of the array:\n");
    for(i = 0; i < SIZEOFARRAY; i++) {
        printf("%d ", a[i]);
    }
    printf("\n");
    /* Call the function that will in turn call the function in the GPU that will fill
the array */
    fillArray(a, SIZEOFARRAY);
    /* Now print the array after calling fillArray */
    printf("Final state of the array:\n");
    for(i = 0; i < SIZEOFARRAY; i++) {
        printf("%d ", a[i]);
    }
    printf("\n");
    return 0;
}
```
simple.cu

- simple.cu contains two functions
 - fillArray(): A function that will be executed on the host and which takes care of:
 - Allocating variables in the global GPU memory
 - Copying the array from the host to the GPU memory
 - Setting the grid and block sizes
 - Invoking the kernel that is executed on the GPU
 - Copying the values back to the host memory
 - Freeing the GPU memory
#define BLOCK_SIZE 32
extern "C" void fillArray(int *array, int arraySize)
{
 int * array_d;
 cudaError_t result;

 /* cudaMalloc allocates space in GPU memory */
 result = cudaMalloc((void**)&array_d,sizeof(int)*arraySize);

 /* copy the CPU array into the GPU array_d */
 result = cudaMemcpy(array_d,array,sizeof(int)*arraySize, cudaMemcpyHostToDevice);
/* Indicate block size */
dim3 dimblock(BLOCK_SIZE);
/* Indicate grid size */
dim3 dimgrid(arraySize / BLOCK_SIZE);

/* Call the kernel */
cu_fillArray<<<dimgrid, dimblock>>>(array_d);

/* Copy the results from GPU back to CPU memory */
result = cudaMemcpy(array, array_d, sizeof(int)*arraySize, cudaMemcpyDeviceToHost);

/* Release the GPU memory */
cudaFree(array_d);
The other function in simple.cu is `cu_fillArray()`:

- This is the GPU kernel

- Identified by the keyword: `__global__`

- Built-in variables:
 - `blockIdx.x`: block index within the grid
 - `threadIdx.x`: thread index within the block
```c
__global__ void cu_fillArray(int * array_d)
{
    int x;
    x = blockIdx.x * BLOCK_SIZE + threadIdx.x;
    array_d[x] = x;
}

__global__ void cu_addIntegers(int * array_d1, int * array_d2)
{
    int x;
    x = blockIdx.x * BLOCK_SIZE + threadIdx.x;
    array_d1[x] += array_d2[x];
}
```
To compile:

- `nvcc simple.c simple.cu –o simple`
- The compiler generates the code for both the host and the GPU
- Demo on cuda.littlefe.net …
In the GPU:

Processing Elements

Array Elements

Block 0
Block 1
Another Example: saxpy

- SAXPY (Scalar Alpha X Plus Y)
 - A common operation in linear algebra
- CUDA: loop iteration \(\Rightarrow \) thread
void saxpy_serial(int n,
float alpha,
float *x,
float *y)
{
 for(int i = 0; i < n; i++)
 y[i] = alpha*x[i] + y[i];
}
__global__ void saxpy_parallel(int n,
 float alpha,
 float *x,
 float *y) {

 int i = blockIdx.x*blockDim.x+threadIdx.x;
 if (i<n)
 y[i] = alpha*x[i] + y[i];
}

“Warps”

- Each block is split into SIMD groups of threads called "warps".
- Each warp contains the same number of threads, called the "warp size"
threads

Block 1

Block 2

Block 3

Block 4

Multi-processor 1
Keeping multiprocessors in mind…

- Each multiprocessor can process multiple blocks at a time.
- How many depends on the number of registers per thread and how much shared memory per block is required by a given kernel.
- If a block is too large, it will not fit into the resources of an MP.
Performance Tip: Block Size

- Critical for performance
- Recommended value is 192 or 256
- Maximum value is 512
- Should be a multiple of 32 since this is the warp size for Series 8 GPUs and thus the native execution size for multiprocessors
- Limited by number of registers on the MP
- Series 8 GPU MPs have 8192 registers which are shared between all the threads on an MP
Performance Tip: Grid Size (number of blocks)

- Recommended value is at least 100, but 1000 would scale for many generations of hardware

- Actual value depends on problem size

- It should be a multiple of the number of MPs for an even distribution of work (not a requirement though)

- Example: 24 blocks
 - Grid will work efficiently on Series 8 (12 MPs), but it will waste resources on new GPUs with 32MPs
Example: Tesla P100

- Launched in 2016
- “Pascal” architecture (successors: Volta, Turing)
- Double-precision performance: 4.7 TeraFLOPS
- Single-precision performance: 9.3 TeraFLOPS
- GPU Memory: 16 GB
Example: Tesla P100

- Number of Multiprocessors (MPs): 56
- Number of Cuda Cores per MP: 64
- Total number of Cuda Cores: 3584
- \#Cuda Cores = \#number of floating point instructions that can be processed per cycle
- MPs can run multiple threads per core simultaneously (similar to hyperthreading on CPU)
- Hence, \#threads can be larger than \#cores
Memory Alignment

- Memory access faster if data aligned at 64 byte boundaries

- Hence, allocate 2D arrays so that every row starts at a 64-byte boundary

- Tedious for a programmer
Allocating 2D arrays with “pitch”

- CUDA offers special versions of:
 - Memory allocation of 2D arrays so that every row is padded (if necessary): `cudaMallocPitch()`
 - Memory copy operations that take into account the pitch: `cudaMemcpyp2D()`
Dividing the work by blocks:

- Rows
- Columns
- Pitch

Block 0
Block 1
Block 2
Watchdog timer

- OS may force programs using the GPU to time out if running too long.
- Exceeding the limit can cause CUDA program failure.
- Possible solution: run CUDA on a GPU that is NOT attached to a display.
Resources on line

- “Computation of Voronoi diagrams using a graphics processing unit” by Igor Majdandzic et al. available through IEEE Digital Library, DOI: 10.1109/EIT.2008.4554342