Non-Photorealistic Rendering

“A means of creating imagery that does not aspire to realism” - Stuart Green

Cassidy Curtis 1998

Goals of Computer Graphics

- Traditional: Photorealism
- Sometimes, we want more
 - Cartoons
 - Artistic expression in paint, pen-and-ink
 - Technical illustrations
 - Scientific visualization
 [Lecture next week]

Pen-and-ink Illustrations
Painterly Rendering
Cartoon Shading
Technical Illustrations

Non-Photorealistic Rendering
Also called:
- Expressive graphics
- Artistic rendering
- Non-realistic graphics
- Art-based rendering
- Psychographics

Some NPR Categories

- Pen-and-Ink illustration
 - Techniques: cross-hatching, outlines, line art, etc.
- Painterly rendering
 - Styles: impressionist, expressionist, pointillist, etc.
- Cartoons
 - Effects: cartoon shading, distortion, etc.
- Technical illustrations
 - Characteristics: Matte shading, edge lines, etc.
- Scientific visualization
 - Methods: splatting, hedgehogs, etc.

Outline

- Pen-and-Ink Illustrations
- Painterly Rendering
- Cartoon Shading
- Technical Illustrations
Hue

- Perception of “distinct” colors by humans
 - Red
 - Blue
 - Green
 - Yellow

![Hue Scale](Source: Wikipedia)

Tone

- Perception of “brightness” of a color by humans
 - Also called lightness
 - Important in NPR

Pen-and-Ink Illustrations

Winkenbach and Salesin 1994

Pen-and-Ink Illustrations

- Strokes
 - Curved lines of varying thickness and density
- Texture
 - Conveyed by collection of strokes
- Tone
 - Perceived gray level across image or segment
- Outline
 - Boundary lines that disambiguate structure

Winkenbach and Salesin 1994

Rendering Pipeline: Polygonal Surfaces with NPR

3D Model → Lighting → Visible Polygons → Procedural Stroke Texture → Stroke Clipping → Outline Drawing → Camera

How much 3D information do we preserve?

Strokes and Stroke Textures

- Stroke generated by moving along straight path
- Stroke perturbed by
 - Waviness function (straightness)
 - Pressure function (thickness)
- Collected in stroke textures
 - Tone dependent
 - Resolution dependent
 - Orientation dependent
- How automatic are stroke textures?
Stroke Texture Examples

Winkenbach and Salesin 1994

Indication

• Selective addition of detail
• Difficult to automate
• User places detail segments interactively

Indication Example

Input without detail
With indication
Without indication

Outlines

• Boundary or interior outlines
• Accented outlines for shadowing and relief
• Dependence on viewing direction
• Suggest shadow direction

Rendering Parametric Surfaces

• Stroke orientation and density
 – Place strokes along isoparametric lines
 – Choose density for desired tone
 – tone = spacing / width

Stroke Texture Operations

Scaling

Changing Viewing Direction (Anisotropic)
Parametric Surface Example

Winkenbach and Salesin 1996

Hatching + standard rendering

- Constant-density hatching
- Longer smoother strokes for glass
- Varying reflection coefficient

Smooth shading with single light!

Environment mapping

Standard rendering techniques are still important!

Orientable Textures

- **Inputs**
 - Grayscale image to specify desired tone
 - Direction field
 - Stroke character

- **Output**
 - Stroke shaded image

Salisbury et al. 1997

Orientable Stroke Texture Example

Salisbury et al. 1997

Outline

- Pen-and-Ink Illustrations
- Painterly Rendering
- Cartoon Shading
- Technical Illustrations

Painterly Rendering

- **Physical simulation**
 - User applies brushstrokes
 - Computer simulates media (paper + ink)

- **Automatic painting**
 - User provides input image or 3D model
 - User specifies painting parameters
 - Computer generates all strokes
Physical Simulation Example

Curtis et al. 1997, Computer Generated Watercolor

Computer-Generated Watercolor

- Complex physical phenomena for artistic effect
- Build simple approximations
- Paper generation as random height field
- Simulated effects

Fluid Dynamic Simulation

- Use water velocity, viscosity, drag, pressure, pigment concentration, paper gradient
- Paper saturation and capacity
- Discretize and use cellular automata

Interactive Painting

User input
Simulation in progress
Finished painting

Automatic Painting Example

Hertzmann 1998

Automatic Painting from Images

- Start from color image: no 3D information
- Paint in resolution-based layers
 - Blur to current resolution
 - Select brush based on current resolution
 - Find area of largest error compared to real image
 - Place stroke
 - Increase resolution and repeat
- Layers are painted coarse-to-fine
- Styles controlled by parameters
Layered Painting

- Blurring
- Adding detail with smaller strokes

Painting Styles

- Style determined by parameters
 - Approximation thresholds
 - Brush sizes
 - Curvature filter
 - Blur factor
 - Minimum and maximum stroke lengths
 - Opacity
 - Grid size
 - Color jitter
- Encapsulate parameter settings as style

Style Examples

- "Impressionist"
 - No random color, \(4 \leq \text{stroke length} \leq 16\)
 - Brush sizes 8, 4, 2; approximation threshold 100
- "Expressionist"
 - Random factor 0.5, \(10 \leq \text{stroke length} \leq 16\)
 - Brush sizes 8, 4, 2; approximation threshold 50
- "Pointilist"
 - Random factor \(~0.75, 0 \leq \text{stroke length} \leq 0\)
 - Brush sizes 4, 2; approximation threshold 100
- Not completely convincing to artists (yet?)

Automatic Painting Using Neural Networks

- Wu et al. 2018

Outline

- Pen-and-Ink Illustrations
- Painterly Rendering
- Cartoon Shading
- Technical Illustrations
Cartoon Shading

- Shading model in 2D cartoons
 - Use material color and shadow color
 - Present lighting cues, shape, and context
- Stylistic
- Used in many animated movies
- Real-time techniques for games

Cartoon Shading as Texture Map

- Apply shading as 1D texture map
- Two-pass technique:
 - Pass 1: standard shader
 - Pass 2: use result from 1 as texture coordinates

Shading Variations

- Gouraud
- 1 texel: Flat shading
- 2 texels: Shadow
- 8 texels: Shadow + highlight

Outline

- Pen-and-Ink Illustrations
- Painterly Rendering
- Cartoon Shading
- Technical Illustrations

Technical Illustrations

- Level of abstraction
 - Accent important 3D properties
 - Diminish or eliminate extraneous details
- Do not represent reality

Conventions in Technical Illustrations

- Black edge lines
- Cool to warm shading colors
- Single light source; shadows rarely used
Technical Illustration Example

- Phong shading
- Metal shading (anisotropic)
- Edge lines
- Gooch shading (cool to warm shift gives better depth perception)

Source: Bruce Gooch

The Future

- Smart graphics
 - Design from the user’s perspective
 - HCI, AI, Perception
- Artistic graphics
 - More tools for the creative artist
 - New styles and ideas

Summary

- Beyond photorealism
 - Artistic appeal
 - Technical explanation and illustration
 - Scientific visualization
- Use all traditional computer graphics tools
- Employ them in novel ways
- Have fun!