Spatial Data Structures

- Data structures to store geometric information
- Sample applications
 - Collision detection
 - Location queries
 - Chemical simulations
 - Rendering
- Spatial data structures for ray tracing
 - Object-centric data structures (bounding volumes)
 - Space subdivision (grids, octrees, BSP trees)
 - Speed-up of 10x, 100x, or more

Bounding Volumes

- Wrap complex objects in simple ones
- Does ray intersect bounding box?
 - No: does not intersect enclosed objects
 - Yes: calculate intersection with enclosed objects
- Common types:
 - Sphere
 - Axis-aligned Bounding Box (AABB)
 - Oriented Bounding Box (OBB)
 - 6-dop
 - Convex Hull

Selection of Bounding Volumes

- Effectiveness depends on:
 - Probability that ray hits bounding volume, but not enclosed objects (tight fit is better)
 - Expense to calculate intersections with bounding volume and enclosed objects
- Amortize calculation of bounding volumes
- Use heuristics

Hierarchical Bounding Volumes

- With simple bounding volumes, ray casting still requires $O(n)$ intersection tests
- Idea: use tree data structure
 - Larger bounding volumes contain smaller ones etc.
 - Sometimes naturally available (e.g. human figure)
 - Sometimes difficult to compute
- Often reduces complexity to $O(\log(n))$
Ray Intersection Algorithm

- Recursively descend tree
- If ray misses bounding volume, no intersection
- If ray intersects bounding volume, recurse with enclosed volumes and objects
- Maintain near and far bounds to prune further
- Overall effectiveness depends on model and constructed hierarchy

Spatial Subdivision

- Bounding volumes enclose objects, recursively
- Alternatively, divide space (as opposed to objects)
- For each segment of space, keep a list of intersecting surfaces or objects
- Basic techniques:

 ![Spatial Subdivision Diagram]

 - Uniform Spatial Sub
 - Quadtree/Octree
 - kd-tree
 - BSP-tree

Grids

- 3D array of cells (voxels) that tile space
- Each cell points to all intersecting surfaces
- Intersection algorithm steps from cell to cell

Caching Intersection points

- Objects can span multiple cells
- For A need to test intersection only once
- For B need to cache intersection and check next cell for any closer intersection with other objects
- If not, C could be missed (yellow ray)

Assessment of Grids

- Poor choice when world is non-homogeneous
- Grid resolution:
 - Too small: too many surfaces per cell
 - Too large: too many empty cells to traverse
 - Can use algorithms like Bresenham’s for efficient traversal
- Non-uniform spatial subdivision more flexible
 - Can adjust to objects that are present

Outline

- Hierarchical Bounding Volumes
- Regular Grids
- Octrees
- BSP Trees
Quadtrees
- Generalization of binary trees in 2D
 - Node (cell) is a square
 - Recursively split into 4 equal sub-squares
 - Stop subdivision based on number of objects
- Ray intersection has to traverse quadtree
- More difficult to step to next cell

Octrees
- Generalization of quadtree in 3D
 - Each cell may be split into 8 equal sub-cells
 - Internal nodes store pointers to children
 - Leaf nodes store list of surfaces
 - Adapts well to non-homogeneous scenes

Assessment for Ray Tracing
- Grids
 - Easy to implement
 - Require a lot of memory
 - Poor results for non-homogeneous scenes
- Octrees
 - Better on most scenes (more adaptive)
- Alternative: nested grids
- Spatial subdivision expensive for animations
- Hierarchical bounding volumes
 - Natural for hierarchical objects
 - Better for dynamic scenes

Other Spatial Subdivision Techniques
- Relax rules for quadtrees and octrees
- k-dimensional tree (k-d tree)
 - Split at arbitrary interior point
 - Split one dimension at a time
- Binary space partitioning tree (BSP tree)
 - In 2 dimensions, split with any line
 - In k dims. split with k-1 dimensional hyperplane
 - Particularly useful for painter’s algorithm
 - Can also be used for ray tracing

Outline
- Hierarchical Bounding Volumes
- Regular Grids
- Octrees
- BSP Trees
Building a BSP Tree

- Use hidden surface removal as intuition
- Using line 1 as root is easy
- Using line 2 as root is also easy

Splitting of surfaces

- Using line 3 as root requires splitting

Building a Good Tree

- Naive partitioning of \(n \) polygons yields \(O(n^3) \) polygons (in 3D)
- Algorithms with \(O(n^2) \) increase exist
 - Try all, use polygon with fewest splits
 - Do not need to split exactly along polygon planes
- Should balance tree
 - More splits allow easier balancing
 - Rebalancing?

Painter's Algorithm with BSP Trees

- Building the tree
 - May need to split some polygons
 - Slow, but done only once
- Traverse back-to-front or front-to-back
 - Order is viewer-direction dependent
 - What is front and what is back of each line changes
 - Determine order on the fly

Details of Painter's Algorithm

- Each face has form \(Ax + By + Cz + D \)
- Plug in coordinates and determine
 - Positive: front side
 - Zero: on plane
 - Negative: back side
- Back-to-front: inorder traversal, farther child first
- Front-to-back: inorder traversal, near child first
- Do backface culling with same sign test
- Clip against visible portion of space (portals)
Clipping With Spatial Data Structures

- Accelerate clipping
 - Goal: accept or reject whole sets of objects
 - Can use spatial data structures
- Scene should be mostly fixed
 - Terrain fly-through
 - Gaming

Data Structure Demos

- BSP Tree construction
 http://symbolcraft.com/graphics/bsp/index.html
- KD Tree construction
 http://donar.umiacs.umd.edu/quadtree/points/kdtree.html

Real-Time and Interactive Ray Tracing

- Interactive ray tracing via space subdivision
 http://www.cs.utah.edu/~reinhard/egwr/
- State of the art in interactive ray tracing
 http://www.cs.utah.edu/~shirley/irt/

Summary

- Hierarchical Bounding Volumes
- Regular Grids
- Octrees
- BSP Trees